
DEPENDABLE SOFTWARE (BOSS) FOR THE BEESAT PICO
SATELLITE

Sergio Montenegro(1), Klaus Briess(2), Hakan Kayal(2)

(1) FhG FIRST; Kekulestr 7; 12489 Berlin; sergio@first.fhg.de
(2) Technical University Berlin; Marchstr 12; 10587 Berlin; {Klaus.briess, hakan.kayal } @ilr.tu-berlin.de

1. ABSTRACT

BEESat (fig. 1) is a picosatellite project (CubeSat
standard) under development at the Institute of
Aeronautics and Astronautics of TUB (Technical
University of Berlin), Berlin, Germany, in cooperation
with AstroFein technik (Berlin) and the Fraunhofer
institute FIRST .

All satellite functions are controlled by software
running in the dual redundant bord computer. This
control software has to provide a very high
dependability label. We selected the BIRD Operating
System BOSS as basic framework to build all
applications on the top of it as building blocks. BOSS
(from FhG FIRST) is a real-time embedded operating
system and middleware, which were designed for safety
and simplicity. Its main design goal was dependability.

2. THE BEESAT PROJECT

The overall objective is to demonstrate and verify new
component technologies for picosatellites, in particular
the qualification of microwheels in orbit - an enabling
actuation device to improve the attitude control
capabilities to a new functional level in the very
restricted confines of a CubeSat.

 Figure 1: BEESAT

Although there are currently many developers of
CUBESAT's, many of them lack of a precise attitude
control system. This in turn is mandatory for more
sophisticated applications, which require pointing
capability. Having a precise attitude control system
opens the door to new potential and very cost effective
applications, which includes areas such as earth
observation, space science, astronomy and on-orbit
verification of new technologies.

The combination of highly sophisticated miniaturised
technologies and the advantage of building swarms or
clusters of pico satellites will result in completely new
applications at very low cost. Beesat will demonstrate
the use of coin size micro wheels (Fig. 2) for the
attitude control of pico satellites in orbit as one of the
key elements on which TU-Berlin is working. Further
missions with a focus on other key technologies are
planed for the future.

Figure 2: microwheel compared with a 1 EURO coin

The main design requirements of BEESat can be
summarized as follows:

- LEO orbit in the range 450 - 850 km

- Lifetime of 1 year

- 3-axis stabilization

- RF communications in UHF band

- Spacecraft operations at TUB

The launch of BEESat is planned for the year 2007.

3. SPACECRAFT

BEESat conforms to the CubeSat standard having a size
of 10 cm x 10 cm x 10 cm, and a mass limit of 1 kg,
(fig. 1) permitting a launch with the P-POD deployment
mechanism of CalPoly. The spacecraft is 3-axis
stabilized utilizing "microwheels" designed and
developed by TUB in cooperation with Astro- und
Feinwerktechnik Adlershof GmbH (Astrofein).

Each microwheel (fig. 2) is having an angular
momentum of at least 2 x 10-4 Nms with a minimum
torque of 3 x 10-6 Nm; the size of a single device is 20
mm in diameter and 14 mm in height. Three or four of
the microwheels are suitable for an actuator system of a
picosatellite providing a 3-axis stabilization capability.
The microwheels are being controlled with a common
electronics board which is connected to the spacecraft
bus via a CAN (Controller Area Network) interface.

The BEESat ADCS (Attitude Determination and
Control Subsystem) utilizes 3 microwheels for 3-axis
stabilization. In addition, a magnetic coil system is
being used to desaturate the wheels and to control the
satellite during orbital periods when the wheels might
not be available. Attitude sensing is provided by a sun
sensor system based on 6 PSD (Position-Sensitive
Detector) photocells of Hamamatsu, and a
magnetometer of Honeywell (HMC1023). The ADCS
software supports 4 main attitude modes: a) inertial
pointing, b) maximum power, c) Earth pointing, and d)
rotation mode (as well as intermediate modes).

The OBDH (Onboard Data Handling Subsystem)
utilizes a microcontroller (Philips LPC2292), a flash
memory for data storage, and a redundant CAN bus
interface for the communication with the microwheels.
The OBDH employs the TinyBOSS operating system of
FIRST (Fraunhofer Institute of Computer Architecture

and Software Technology), Berlin. TinyBOSS is an
adapted version of BOSS, a real-time operating system
being successfully flown on the BIRD (Bi-Spectral
Infrared Detection) microsatellite mission of DLR.
Note: the acronym BOSS stood originally for "BIRD
Operating System (Simple)" - it is now being used for
many other applications, not only for those in space.

Power is being provided by surface-mounted solar cells.
Four Li-ion battery cells are being used for spacecraft
operations during the ecliptic phase of the orbit. The
power bus provides a voltage of 3.3 V and 5 V to the
S/C subsystems, utilizing DC/DC converters.

4. THE OPERATING SYSTEM BOSS AND ITS
MIDDLEWARE

BOSS (from FhG FIRST) is a real-time embedded
operating system and middleware, which were designed
for safety and simplicity and to allow their own
mathematically formal verification. Complexity is the
root of most development errors – if you eliminate
complexity, you eliminate most development errors.
This was one target of BOSS. The BOSS-middleware
simplicity allows the system to be easily understood,
used and ported to other platforms even to FPGA (Field
Programmable Gate Array) logic. The BOSS
middleware has already been implemented and is being
used in software for real-time dependable systems. We
now aim to implement the same middleware in FPGA
hardware. This will bring hardware and software
developers together in an environment that is familiar to
both. It makes no difference whether applications
running on top of the BOSS middleware are
implemented in software or hardware. For
communication purposes, it makes no difference
whether the communication partner is implemented in
hardware, software or both. The BOSS middleware
allows any combination of communication (SW/SW,
SW/HW, HW/SW, HW/HW) and creates an internal
satellite standard interface between software and
hardware without needing different device drivers for
different devices.

4.1. BOSS Middleware

The BOSS-Middleware was designed to support fault
tolerance. All processes running on top of the BOSS-
Middleware can exchange messages asynchronously
using a subscriber protocol: a process or a hardware
device can subscribe to one or more message types by
name. When a process or a hardware device sends a
message of a given type (name), each subscriber to this
name receives a copy of the message. For

communication purposes, the node and even the
software/hardware barriers/boundaries are transparent.
The messages are distributed across these barriers.
Using this approach, we obtain very high flexibility and
users do not have to differentiate between local/remote
functions or hardware and software functionality. The
system can be configured or reconfigured simply by
plugging software modules or hardware devices into/out
of the middleware.

The BOSS-Middleware provides transparent support for
fault tolerance. The simplest example of this is a
controller sending commands (messages) to a device.
(Fig. 3) As a first step, we insert the middleware
between the device and the controller by implementing
the same interface on both sides of it (Fig. 4). Neither
the controller nor the device notices this intervention.
The middleware forwards the messages across node
boundaries, which means that controller and device no
longer need to be located in the same node.
Furthermore, messages can be replicated if there is
more than one subscriber to a message type (name).
Now we can add a monitor to hear messages of the
same type, like the device. The monitor can create a log
file and/or execute an online diagnosis of the system.
Again, no one will notice this intervention.

Figure 3: Controller-device, No middleware

Figure 4: middleware insertion

The next step is to replicate the controller, simply by
creating several instances of it, if possible running on
different nodes (Fig. 5). They need not know about the
existence of the other replicas. What are needed now are
voters that intercept all messages to the device, compare
them and send only those that are most likely to be right
(a democratic decision, e.g. two of three) to the device.
If required, it is possible to replicate the voter, too. One
voter – the worker (as in BIRD) – is in charge and the
other one – the supervisor (as in BIRD) – is a hot
redundancy. The supervisor is ready to take control if
the voter in charge fails to respond .

Figure 5: middleware handling service replication

The routing of messages depends only on the
types/names of the messages and on who is subscribed
to each name.

4.2. MESSAGE DISTRIBUTION

The BOSS Middleware replicates and distributes
messages asynchronously using a publisher/subscriber
protocol. Tasks (Threads too) which provide services
publish each of them under a given name (sending
messages with a name). Any task can subscribe to one
or more services (message types by name). The
middleware keeps a list of subscriber names each with a
reference to the subscriber object (subclass of
“Message”)

The user creates own messages by extending
(inheritance) the class “Message”. Message provides a
method “send(char *name)” to send its own data. The
name string of “send()” identifies the service name or
(equivalent) the messages type. “send()” access the
“NameServer” built-in in the middleware, in order to
find all subscribers to the given name. The
“NameServer” has, for each registered name, a
reference to the associated receiver object. In this case a
subclass of “Message”. Each name can be repeated with
different associated objects. This would mean the
named service has more than one subscriber which is a
normal case.

Using the built-in iterator, the “NameServer” goes
through the name list, and for each matching entry, it
calls the methods “copyDataFrom(Message *from)”
and “execute(char *name)” of the associated object
(subclass of “Message”). Thusly each subscribed
message gets the change to get (or discard) a copy of
the transmitted data (using “copyDataFrom()”) and then
to process it (using “execute()”).

If the sent message has to be forwarded across an
external network, like for example Ethernet, CAN-Bus
or a serial link, the middleware calls the method “size()”
of the calling object (a subclass of “Message”). The
byte count returned by “size()” is used to serialise and
send the message through the network.

If required, each node has a middleware network server
which gets messages from the network and distributes
them using the local middleware like any other local
task.

5. BOSS KERNEL

The kernel performs local resource administration like
thread scheduling, time management and interrupt
propagation; and provides some basic services for
thread synchronisation and basic local communication.

The user shall extend the BOSS kernel framework by
means of inheritance from the “Thread” class, in order
to implement his functionality or application . The
subclasses of “Thread” are integrated automatically in
the framework and can be administrated by the kernel.

The kernel keeps a list of all user threads (active
objects, subclasses from “Thread”) and activates each
of them at the appropriated moment.

Inside of the kernel there are three objects which are
active by themselves without requiring user subclasses.
These three objects manage user threads and resources.

1. The Time manager administrates the local time at
each node. Time is a microseconds counter stored in 64-
Bit variables. Time 0 is the boot time of the node.
“ENDOFTIME” is a constant containing the highest
possible value for 64 Bits. It correspond to
approximated 300 000 years in the future. TimeManager
also provides conversion from/to micro seconds counter
to/from UTC and Gregorian-date.

2. The Scheduler keeps a list of all threads (static array
inside of Thread) and according to priority, time to start
and block, it assigns CPU time (this means activation)
to each of them.

3. The Interrupt manager keeps a list of user interrupt
servers. Each time an event or interrupt occurs the
InterruptManager searchs its list of servers and calls the
method “eventServer()” of the corresponding
(registered) Thread.

The classes to generate passive objects implement help
functionality to support the teamwork between active
objects. These functions are:
for synchronisation (“TimeController”, “Semaphore”,
“SignalBox”)
data sharing/passing (“AsyncComFifo”,
“AsyncComBuf”) and
combined data sharing/passing and synchronisation
(“MailBox”).

6. BOSS HARDWARE DEPENDENCIES

The hardware dependent layer is very small and
implements the functionality which is different on each
platform, e.g. CPU-register load/store, low level
Hardware-Drivers and basic interrupt management. This
is the only construction site in order to be able to move
from one platform to another. The higher layers do not
need any modification.

The interaction between the hardware dependent layer
(HDL) and the rest of the system is shown in figure 6.1

The kernel invokes services form the HDL using
normal functions calls (no object invocations). Such
functions are for example to perform a context switch
from one task to another (transfer), to turn interrupts
on/off, node reset, atomar operations, get/set time and
set timer interrupts, etc. The kernel and higher layers
decide when to perform this activities. The HDL

transforms these calls in Hardware register access,
going directly to the CPU, timers and HW registers or
executing assembler instructions which are not available
in higher languages.

The HDL reacts to interrupts from the Hardware, by
invoking the basic interrupt server like a function call
(call from interrupt). The basic interrupt server will
firstly access some hardware registers to get more
information about the interrupt and reset it, then if
required it performs an upcall to the Kernel, which can
propagate the upcall to higher layers. Note: the upcalls
are executed asynchronously from all other thread
functions and on the stack of the current thread.
Therefor by implementing a user interrupt server
(upcall) care has to be paid to avoid data corruption.
Semaphores will not work at this level.

Higher layers, HDL and hardware can access common
memory locations to communicate. Because upcalls
work asynchronously to threads and no semaphore
protection can be provided, the communication shall
relay on atomar variables (simple types like integer and
character) read/write (with ony one reader and only one
writer) and using asynchronous communication objects
for more complex data structures. For this purpose the
user can create objects from “AsyncComBuf” and
“AsyncComFifo”. This classes are implemented in such
a manner, that both sides can be accessed
asynchronously from each other (but only one reader
and only one writer). No explicit locks or
synchronisation is required.

Interrupts have the highest priority in the system. When
designing the communication structure between
interrupts and threads consider that a thread can be
interrupted by a hardware interrupt at any time (except
if interrupts are disabled), but an interrupt server will
never be interrupted by a thread. If dispatching is
enabled, it is quite possible that a thread switch will take
place after the interrupt server returns.

For some very exotic cases it could be required to turn
interrupts off. In such cases the user can turn interrupts
on/off using the constructors “ATOMAR” and
“ATOMAREND”but this shall be only as the last
alternative if nothing else helps. Between “ATOMAR”
and “ATOMAREND” interrupts are disabled, therefor
this block shall be as short as possible (no longer than 3
microseconds please). “ATOMAR” and
“ATOMAREND” can be nested. Internally there is a
counter which counts the entries (++) and the exits (--)
of this blocks. Only when the counter reaches 0 again,
the kernel enables interrupts again.

4. REFERENCES

2005: Kayal, H: BEESat internet presentations:
http://directory.eoportal.org/pres_BEESatBerlinExperi
mentalEducationalSatellite.html
http://www.beesat.d e

1999: Montenegro, S.: Entwicklung
sicherheitsrelevanter Systeme, Hanser Verlag, ISBN: 3-
446-21235-3

2003: Briess, K., Baerwald, W., Gill, E., Halle, W.,
Kayal, H., Montenbruck, O., Montenegro, S., Skrbek,
W., Studemund, H., Terzibaschian, T., Venus, H.:
Technology Demonstration by the BIRD Mission
4th IAA Symposium on Small Satellites for Earth
Observation, April 7-11, 2003
ISBN 3-89685-569-7

2002: Briess, K., Bärwald, W., Hartmann, M., Kayal,
F., Krug, H.3, Lorenz, E., Lura, F., Maibaum, O.,
Montenegro, S., Oertel, D., Röser, H.P., Schlotzhauer,
G., Schwarz, J., Studemund, H., Turner, P., Zhukov, B.:
Orbit Experience and First Results of the BIRD Mission
53rd International Astronautical Congress The World
Space Congress 2002, October 10-19, 2002, Houston,
Texas, USA

2002: Briess, K., Montenegro, S., Bärwald, W., Halle,
W., Kayal, H., Lorenz, E., Skrbek, W., Studemund, H.,
Terzibaschian, T., Walter, I.:
Demonstration of Small Satellite Technologies by the
BIRD Mission
16th Annual AIAAA/USU Conference on Small
Satellites, Logan, Utah, USA 2002

2002: Montenegro, S., Barr, V.:
BOSS/Ada: An Open Source Ada 95 Safety Kit
Ada Deutschland Conference 2002, March 6-8, 2002,
Jena, Germany

